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QUESTION ONE 

a. Give concise definitions of the following concepts related to functions: 

i. Range 

ii. Domain 

1 

b. Let f(a) = (a 2 - 2a + 6)2, compute f(l) and f(-1). 

c. Use interval notation to express the domain and range of the following function: 

2k - 1 
g(k) = kz - k 

d. Suppose you know that the production function that expresses the relationship 

between table grapes output (q) and fertilizer application rate (x) is a quadratic 

function that has: (i) maxima point and (ii) roots at O and 75. Based on the 

provided information, answer the questions below 

[MARKS] 

(2) 

(2) 

(2) 

(6) 

i. Derive the mathematical equation of the production function. (3) 

ii. Find the critical point of the production function you have derived in d(i). (5) 

iii. Draw and label a graph that illustrates the production function. The graph 
must clearly show the roots, maxima, and y-intercept points of the (5) 
production function. 

TOTAL MARKS [25] 



QUESTION TWO 

a. Use mathematical expressions to concisely define the following concepts: 

i. Newton's Difference Quotient. 

ii. Regular limit. 

b. Briefly describe at least two algebraic approaches you would use to find the limit 

of function at a given point, x = a. 

c. Find: 

i. 

ii. 

iii. 

I. (2+h) 2 -4 1m---
h-+o h 

I. ~-1 Im 
L-+1 L2 +2L-3 

. ,Jx-2-2 hm---
x-+ 6 X - 6 

d. Find the equation of a straight-line that is tangent to the curve: 

y = q2 - 2q - 24 

at q = 4. 

TOTAL MARKS 

[MARKS] 

(2) 

(2) 

(4) 

(2) 

(3) 

(5) 

(7) 

[25] 



QUESTION THREE 
a. Define the following concepts: 

i. Partial derivative 

ii. Cross derivative 

b. Find the first derivative of the following function: 

i. f (x) = (3x 4 - 5) 6 

ii. f(L) 3~ -
c. Given a function: 

z(x,y) = 3e7-2xy2 

Find Zx, Zy and Zyz· 

d. Optimize the following function by (i) finding the critical value(s) at which the 

function is optimized and (ii) testing the second-order condition to distinguish 

between a relative maximum or minimum. 

q(x) = x 3 - 6x 2 
- 135x + 4 

TOTAL MARKS 

[MARKS] 

(2) 

(2) 

(3) 

(4) 

(6) 

(8) 

[25] 



QUESTION FOUR 

a. Find: 

i. I ~dt 

ii. fo1c3x3 - x + l) dx 

iii. f 12x 2 (x 3 + 2)dx 

b. In the manufacture of a product, fixed costs N$4000. If the marginal-cost 

function is: 

de 
dq = 250 + 30q - 9q 2 

where c is the total cost (in dollars) of producing q kilograms of product. Find the 

cost of producing 10 kilograms of the product. 

c. To fill an order for 100 units of its product, a firm wishes to distribute production 

between its two plants, plant 1 and plant 2. The total-cost function is given by: 

c = f (q1, qz) = qf + 3q1 + 25q 2 + 1000 

where q1 and q2 are the numbers of units produced at plants 1 and 2, 

respectively. How should the output be distributed to minimize costs? {Hint: 

assume that the critical point obtained corresponds to the minimum cost and the 

constraint is q1 + q2 = 100). 

TOTAL MARKS 

THE END 

[MARKS] 

(2) 

(3) 

(5) 

(5) 

(10) 

[25] 



FORMULA 

Basic Derivative Rules 

C .. n1:1~111 :\.ulliph~ Rule !!_lc/(x)j- cf'(.,·) 
d< 

Po'.\'t..1 Ruh~. ~(.,·\) - nx"·1 

a., 

Suin Ruk ~lf(x)• g(x)I - j'(x)-• g'(x) 
ax 

Diffmncr Rnic ~[f(x)-g(x)I- f {x)- g'(x) 
aY 

Prorluct Ruic 4-[/(x)~(x)]~ /(x)o'(x)- v(x)/'(x) ax "' .., 

Quc·1iei1< Rule --=t-f /(x) - g(.<)/'(.<)- f(x)g'(x) 
a.x L g(.t) c [!'(X)j' 

Ch,in Rulo· -j; f(g(x)) - j te(x))e'(x) 

Basic Integration Rules 
I. f a1fr=ax+C 

f • x•·• 
2. x dr=-+C, 

n+ I 

3. f ;dx = In 1-'i + C 
4. fe'd-r=e·'+C 

5. fa'cfr=~+C 
Ina 

II~ -I 

6. flnxdx=xlnx-x+C 

Integration by Substitution 
The following are the 5 steps for using the 
integration by substitution metthod: 

• Step 1: Choose a new variable u 
• Step 2: Determine the value dx 
• Step 3: Make the substitution 

• Step 4: Integrate resulting integral 

• Step 5: Return to the initial variable x 

Unconstrained optimization: Multivariate 
functions 
The following are the steps for finding a 
solution to an unconstrained optimization 
problem: 

Relarive 111axim11111 Relarive 111ini11111111 
I. f_,_.f, = () 1.!,.,J;=0 
2. f,_,. f,-v < Q 
3. fu · /:._,. > (f,_..f 

2. f,.,,f,.,. > 0 
3. f,., · /,._,. > (f,,)2 

Derivative Rules for Exponential Functions 
d ( • ) • - e· = e· 
dx 

.!!_ (a' ) = a' In a 
dx 

.!!_ ( e ''' > ) = e' <' > g '( x ) 
dx 

.!!_ ( a ' <' > ) = 1 n ( a ) a '< '> g '( x) 
dx 

Derivative Rules for Logarithmic Functions 
d I -(lnx)=-,x>O 
dx x 
d u '( x) 

-ln(g(x)) = -"-·-
dx g(x) 
d I -(log 0 x)= --,x > 0 
dx x In a 
d u '(x) 

-d (log 0 g(x))= 0 
-

x g(x)ln a 

Integration by Parts 
The formula for the method of integration by 
parts is: 

.ludv = 11. • v-_/vdu 
There are three steps how to use this formula: 

• Step 1: identify u and dv 
• Step 2: compute u and du 
• Step 3: Use the integration by parts 

formula 

Unconstrained optimization: Univariate 
functions 
The following are the steps for finding a solution 
to an unconstrained optimization problem: 

• Step 1: Find the critical value(s), such 
that: 

f '(a) = 0 
• Step 2: Evaluate for relative maxima or 

minima 
o If f "(a) > 0 -1 minima 
o If f "(a) > 0 -1 maxima 

Constrained Optimization 
The following are the steps for finding a solution 
to a constrained optimization problem using the 
Langrage technique: 

• Step 1: Set up the Langrage equation 

• Step 2: Derive the First Order Equations 

• Step 3: Solve the First Order Equations 

• Step 4: Estimate the Langrage Multiplier 



Additionally: 
2 

• If fxx · [yy < Uxy) , when fxx and [yy 
have the same signs, the function is at 
an inflection point; whenfxx and [yy 
have different signs, the function is at 
a saddle point. 

2 
• If fxx · [yy = (fxy) , the test is 

inconclusive. 


