

HAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF AGRICULTURE & NATURAL RESOURCES SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE IN AGRICULTURE			
QUALIFICATION CODE: 07BASA	LEVEL: 6		
COURSE CODE: MTA611S	COURSE NAME: Mathematics for Agribusiness		
DATE: June 2022	PAPER: Theory		
DURATION: 3 Hours	MARKS: 100		

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER(S)	Mr. Mwala Lubinda	
MODERATOR:	Mr. Teofilus Shiimi	

INSTRUCTIONS	
1.	Attempt all questions
2.	Write clearly and neatly.
3.	Number the answers clearly & correctly.

PERMISSIBLE MATERIALS

- 1. All written work MUST be done in blue or black ink
- 2. Calculators allowed
- 3. No books, notes and other additional aids are allowed

THIS QUESTION PAPER CONSISTS OF 7 PAGES (including this front page).

- a. Give concise definitions of the following concepts related to functions:
 - i. Range (2)
 - ii. Domain (2)
- b. Let $f(a) = (a^2 2a + 6)^{\frac{1}{2}}$, compute f(1) and f(-1). (2)
- c. Use interval notation to express the domain and range of the following function:

$$g(k) = \frac{2k - 1}{k^2 - k} \tag{6}$$

- d. Suppose you know that the production function that expresses the relationship between table grapes output (q) and fertilizer application rate (x) is a quadratic function that has: (i) maxima point and (ii) roots at 0 and 75. Based on the provided information, answer the questions below
 - i. Derive the mathematical equation of the production function. (3)
 - ii. Find the critical point of the production function you have derived in d(i). (5)
 - iii. Draw and label a graph that illustrates the production function. The graph must clearly show the roots, maxima, and y-intercept points of the production function. (5)

TOTAL MARKS

[25]

		QUESTION TWO	[MARKS]		
a.	a. Use mathematical expressions to concisely define the following concepts:				
	i.	Newton's Difference Quotient.	(2)		
	ii.	Regular limit.	(2)		
b.	b. Briefly describe at least two algebraic approaches you would use to find the limit		(4)		
	of fun	ction at a given point, $x = a$.	(4)		
c.	Find:				
	i.	$\lim_{h \to 0} \frac{(2+h)^2 - 4}{h}$	(2)		
		$\lim_{L \to 1} \sqrt{\frac{L-1}{L^2 + 2L - 3}}$	(3)		
	iii.	$\lim_{x \to 6} \frac{\sqrt{x-2}-2}{x-6}$	(5)		
d. Find the equation of a straight-line that is tangent to the curve:					
		$y = q^2 - 2q - 24$	(7)		
	at $q=4$.				
TOTAL MARKS		[25]			

[25]

	QUESTION THREE	[MARKS]
a.	a. Define the following concepts:	
	i. Partial derivative	(2)
	ii. Cross derivative	(2)
b.	Find the first derivative of the following function:	
	i. $f(x) = (3x^4 - 5)^6$	(3)
	ii. $f(L) = \sqrt[3]{\frac{L-1}{L^2+2L-3}}$	(4)
c.	Given a function:	
	$z(x,y) = 3e^{7-2x}y^2$	(6)
	Find z_x, z_y and z_{yz} .	
d.	Optimize the following function by (i) finding the critical value(s) at which t	he
	function is optimized and (ii) testing the second-order condition to distingui	sh
	between a relative maximum or minimum.	(8)
	$q(x) = x^3 - 6x^2 - 135x + 4$	
TO	TAL MARKS	[25]

a. Find:

i.
$$\int \frac{1}{\sqrt[3]{t}} dt$$
 (2)

ii.
$$\int_0^1 (3x^3 - x + 1) \, dx \tag{3}$$

iii.
$$\int 12x^2(x^3 + 2)dx$$
 (5)

b. In the manufacture of a product, fixed costs N\$4000. If the marginal-cost function is:

$$\frac{dc}{dq} = 250 + 30q - 9q^2 \tag{5}$$

where c is the total cost (in dollars) of producing q kilograms of product. Find the cost of producing 10 kilograms of the product.

c. To fill an order for 100 units of its product, a firm wishes to distribute production between its two plants, plant 1 and plant 2. The total-cost function is given by:

$$c = f(q_1, q_2) = q_1^2 + 3q_1 + 25q_2 + 1000$$

where q_1 and q_2 are the numbers of units produced at plants 1 and 2, respectively. How should the output be distributed to minimize costs? (Hint: assume that the critical point obtained corresponds to the minimum cost and the constraint is $q_1 + q_2 = 100$).

TOTAL MARKS [25]

THE END

FORMULA

Basic Derivative Rules

Constant Rule:
$$\frac{d}{dx}(c) = 0$$

Constant Multiple Rule:
$$\frac{d}{dx}[cf(x)] - cf'(x)$$

Power Rule:
$$\frac{d}{dx}(x^4) - nx^{4-1}$$

Sum Rule:
$$\frac{d}{dx}[f(x)+g(x)] - f'(x) + g'(x)$$

Difference Rule:
$$\frac{d}{dx}[f(x)-g(x)]=f'(x)-g'(x)$$

Product Rule
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$

Quotient Rule
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] - \frac{g(x)f'(x) - f(x)g'(x)}{\left[g(x) \right]^2}$$

Chain Rule:
$$\frac{d}{dx} f(g(x)) - f(g(x))g(x)$$

Basic Integration Rules

1.
$$\int a \, dx = ax + C$$

2.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

3.
$$\int \frac{1}{x} dx = \ln |x| + C$$

$$4. \quad \int e^x \, dx = e^x + C$$

$$5. \int a^x dx = \frac{a^x}{\ln a} + C$$

$$6. \quad \int \ln x \, dx = x \ln x - x + C$$

Integration by Substitution

The following are the 5 steps for using the integration by substitution metthod:

- Step 1: Choose a new variable u
- Step 2: Determine the value dx
- Step 3: Make the substitution
- Step 4: Integrate resulting integral
- Step 5: Return to the initial variable x

Derivative Rules for Exponential Functions

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(a^x) = a^x \ln a$$

$$\frac{d}{dx}(e^{x(x)}) = e^{x(x)}g'(x)$$

$$\frac{d}{dx}\left(e^{x(x)}\right) = e^{x(x)}g'(x)$$

$$\frac{d}{dx}\left(a^{f(x)}\right) = \ln(a) a^{f(x)} g'(x)$$

Derivative Rules for Logarithmic Functions

$$\frac{d}{dx}(\ln x) = \frac{1}{x}, x > 0$$

$$\frac{d}{dx}\ln(g(x)) = \frac{g'(x)}{g(x)}$$

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}, x > 0$$

$$\frac{d}{dx}(\log_a g(x)) = \frac{g'(x)}{g(x) \ln a}$$

Integration by Parts

The formula for the method of integration by parts is:

$$\int u dv = u \cdot v - \int v du$$

There are three steps how to use this formula:

- Step 1: identify u and dv
- Step 2: compute u and du
- Step 3: Use the integration by parts formula

Unconstrained optimization: Univariate functions

The following are the steps for finding a solution to an unconstrained optimization problem:

Step 1: Find the critical value(s), such that:

$$f'(a) = 0$$

Step 2: Evaluate for relative maxima or minima

o If
$$f''(a) > 0 \rightarrow \min$$

o If
$$f''(a) > 0 \rightarrow \text{maxima}$$

Constrained Optimization

The following are the steps for finding a solution to a constrained optimization problem using the Langrage technique:

- Step 1: Set up the Langrage equation
- Step 2: Derive the First Order Equations
- Step 3: Solve the First Order Equations
- Step 4: Estimate the Langrage Multiplier

Unconstrained optimization: Multivariate functions

The following are the steps for finding a solution to an unconstrained optimization problem:

Relative maximum Relative minimum

1. $f_x, f_y = 0$ 2. $f_{xx}, f_{yy} < 0$ 3. $f_{xx} \cdot f_{yy} > (f_{xy})^2$ 1. $f_x, f_y = 0$ 2. $f_{xx}, f_{yy} > 0$ 3. $f_{xx} \cdot f_{yy} > (f_{xy})^2$

Additionally:

- If $f_{xx} \cdot f_{yy} < (f_{xy})^2$, when f_{xx} and f_{yy} have the same signs, the function is at an **inflection point**; when f_{xx} and f_{yy} have different signs, the function is at a **saddle point**.
- If $f_{xx} \cdot f_{yy} = \left(f_{xy}\right)^2$, the test is inconclusive.